Novel Vector Sensors Design with Three Co-located or Distributed Elements for the 3D DoA Estimation
نویسندگان
چکیده
In this paper, two novel vector sensors using a reduced number of radiating elements are proposed to estimate the directions of arrival of incoming electromagnetic signals in the 3D space, azimuth and elevation angles. The first one uses co-located radiating elements while the other one is based on distributed antenna elements. These two sensors combine only two half-loops and one linear monopole placed on a metallic plate in view of embedded applications. Full wave electromagnetic simulations are performed to take into account the electromagnetic coupling effects between the antenna elements. The directions of arrival estimation accuracy of electromagnetic signals incoming in arbitrary directions in the full 3D space are computed from the MUSIC algorithm. For experimental validation purpose, a prototype is manufactured and the directions of arrival measurements are performed. Then a novel vector sensor design with a reduced number of antenna elements is presented. The antenna elements are spatially distributed. An analysis is carried out to determine the largest distance between the antenna elements without causing ambiguous estimations in the 3D space. The estimation accuracy of the resulting sensor is reported. Finally the performances of these two vector sensors are compared.
منابع مشابه
Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملDecoupled Estimation of 2D DOA for Coherently Distributed Sources Using 3D Matrix Pencil Method
A new 2D DOA estimation method for coherently distributed (CD) source is proposed. CD sources model is constructed by using Taylor approximation to the generalized steering vector (GSV), whereas the angular and angular spread are separated from signal pattern. The angular information is in the phase part of the GSV, and the angular spread information is in the module part of the GSV, thus enabl...
متن کاملElectromagnetic Vector-sensor Array Pro- Cessing for Distributed Source Localization
We consider the problem of direction-of-arrival (DOA) estimation for distributed signals with electromagnetic vector sensors, of which each provides measurements of the complete electric and magnetic fields induced by electromagnetic (EM) signals. In this paper, we consider situations where the sources are distributed not only in space with a deterministic angular signal density, but also in po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013